1

MATRIX Client-Server C# based
TCPI/IP Framework

Corresponds to Version 1.2

Change History

Date Change

25.09.2021 added info about version

19.07.2021 Initial doc

Table of Contents

INETOAUCTION. ¢ ettt ettt ettt ettt b et s e s bt et e et e sbe e be st e saeeseemtesaeenbesasesanenseens 4
THE PACKAGE.....ceccieieiiiieiieeete ettt ettt et e e st e e st e st e e sat e e s steesssteesssaaesssaaensssaenssneaesannnns 5
Quick Programming GUIAE.........c.eevueerieriiiinieeieenieeieest ettt e st et esaeeseeesbeesaaessseessaesasessasaessnnnes 6
IMATRIX APL..e ettt ettt et s bt et st e st e et e et e s bt et e eatesaeenbeentesbeensesasenaaesnsaesnns 12
APT MELhOGS.eneeeeeieeieeitet ettt ettt a et s e be st s st e bt e beeesneeessaeesnneenns 13
FOTCeSaVECONTIG. ... viiiieciieieeeteeee ettt ettt et re e ae e v e e e e et e e baeentee e saeaeenssaeas 13
GetCONTIGITOIML .cuteeieeiieeieee ettt ettt et e s te e st e st e e s sae st e e st e ssse e snesssaenseessnsaesnns 14
GtMaASTET AAAISS. ... veeeeireeeeieeeiee ettt e ettt e et e e steeesteeesaeeessbeesssaeessaeesssaeessseesnsseesenssssneeeenns 15
GetSYSTEIMINTO. ..ccuuiiiiieiieeieet ettt et s bt e st e st e e st e ssbe e anesbeesseesssneesnnn 16
ReGISTEIMETNOM. ... viiieiieeiiecceeet ettt et e et e e sabe e st e e snbe e e s sssaaeaeessnnreneas 18

SOI. .ttt sttt et e h e b et sae e bt e e ne e e eneeenee 20
SENATOME.....cceiiieiieeteeeete ettt e eete e et e e st e e s teeesabeeesaeeesssaee e steeesseesessnssaseassssssssaeesennnns 21
SEtAVAILADIEHOSES.euieiiiiieiteieee ettt 23
SOTHOSTATIASES. ...ueveeeiieeeeitee et etteeete e et e e ste e e stte e et e e s bt e e sbeessabeeesaseeessseessseeesaeasssseensseeens 24
SetCOMPONENTSIALE.eeiieiiiieeeeiieeeeerteeeeriteee e et e e serteeeesrteeeeesnrreeesesreeeeesssssssssnnnnnnsnnns 25

ST (O00) 11 =0 1<) 1 T ORI 26

N - 1 OO P PP OR PPt 27

N1 0] 1 SO OO RRPPPPPR 28
SUDSCTIDE. ...ttt ettt et be et sttt et e st st e st e s b e e e b s 29
SYNCHREQUESL.....ceiiiiiieiieeeiteeeite ettt ettt e ste e et e e st e e s taee s taeesssaeesssaassssaeessesssseeeeanns 31
TTACR. c.eteee ettt ettt e a e e e e e ara e 33
UNSUDSCIIDE. ... tiiieeciteeete ettt e st e e s te e et e e e be e ssaeeesae e s st eeessaaaeeeennnsens 34
WaitFOTCOMPONENL...ccccuuttieiieiiteeeeiieeeeeeieteeeeertteeeerieteeeseneeeesesarreesesnrteesssnnnnsnneeeeeeeeeesessanns 35
WaitFOrCOmMPONENTINIL....ciieeirieieeiiieeeeiiiieeeecireeeserttee e et eeesstreeeessreeeessseeeesssseeesssssnsnnnnne 36
PrOPETITY LISt eeiiiiiieeeiiieeeeetee ettt e et e e et e e s e et e s s arb e e e e e snsaeesesnsseeesensneeeesnnnnns 37
DAL TYPES. . eteeieiiteeeeiteeeectt ettt ettt e ete e e s st e e s e be e e s s bt e e e s bbae e e e tteeeesabaaaaaaeeeeeeeaans 38
CPropertyLiSt (CONSIIUCTOT).....ceirvteerreeeriieeerireeesireeeriteesateesteessareessseessnseesanseesssneessssessssseees 40

F 6 (a2 0] 0T<] 1 7P PSS UR P UUPURRURUPPPPRRRNt 41
AAdPIOPEItY VaAlUE.......eoiieeiiiiiieeieeit ettt ettt et ettt s be e st e e s aba e e ssasaeesnnaeeas 42
AddABIanCRL.....ooiiiieeeeeeee ettt et e st e st e e aae e s aaeestaeennraeennns 43
FINAPTODEITY ... eiiiieiieeieeeet ettt ettt et e st e st e st e e st e e be e s st e sssaesabesbeesaseesnnsseean 44
FINAPTOPEITY V ..eiiteieiee ettt ete e st e e s te e e s te e et e e e aa e e ssae e essaeeessaeesssaaaaesennnsenes 45
GOEPTOPEITY ...uvteeeieitteeeeettee ettt ettt e et e e ettt e e s e et e e e s anteeeesenseeeessanreeeeeeeeeeseesassnnnnnnsnnnes 46

| 2] (=312 2) 1<) 2 OO 47
GetENUIML ..ottt ettt 48
7011111 SO USROS UPPPPPPPRRN 49
Constructing, sending and receiving MeSSAZES.cecvterierrieeriieereeniersiresreesseessessseessssseesssseenns 50
USING MATRIX 0N UTILY..ettiiiiieeiieiiieeeeiieeeesiteesesiteeeessteeeessiiseeessessaeesesnsaeessssnssssssssseeeeesesssnnns 51
Setting up the ENVIIONMENL........ccctiiiiriiiiiierieeiteeieeste st sie et ste et e saessseesaeesseessnessaennns 52
Initializing the MATRIX il YOUT GAIME.....cccccuitiiieeeiieeeiieeeiieeesieeeseeeeseeeesseeessseesssseessssseessanns 53
USING SYNCRREQUEST.......ceeiiiiiiiiieieeeeteet ettt sttt et e st e bt e s te e e e s aeaesssssaessssnaesnnn 56
MESSAZE SUDSCTIPLIONS.ceiiuieeririeeiiieeriieesteeeeiteeesteeesseeessreeessseeessseesssseeeseessseesssseessseeessseenns 60
Using MATRIX in Visual StUAio.......ccecueerieriiiiniieeiieieeieeeesee ettt ettt e e s s 61
(0701110110111 (aF: 10 OO OO PR SRRTPPPPPPPPPP 62

TSt COMPOIEIILS.uuveierieireeereriieeeeerrteeeeesrteeeessreeesaenrreeeeesseeeeasssneesssssraeesssnsneesessssneessnnsseeesssnsnn 64

CONTIGUIALION.eeuteiieieeieetete ettt ettt b et st sat et st e s st e be et e sbe e bt eate s bt e eabeesane 66

Setting UP COMIMUNICATION.cciiriuiiteirriiteeeeriieeeeertteeeeerteeeeesrtreeeessrreeeesssaeeesssnseeessssssaeesssssnees 68
MATRIX COMPONENT SELHMES.....ceeieiureeriaireeeiieitteeeeirteeeesireeeseerreeesesreeeessrneeeeeesessssssssnns 68
COMMUNICALOT SEILIMES. .uuvteeeerrieereeiiteererreeeeesireeeeerrteeeessreeeesssreeesssseeesssssaeeeeeesesssssssnnns 69
Example of the communication SEttNGS...........cotevrerrererreriirieeieneenre et 70

SELUNG UP TTACE. ... eeeeeieiiiei ettt ettt ettt e e st e e e s s bt e e s sttt e e s s s s sbsbeeaeeeeeeeeeessnnns 71

Introduction

MATRIX is a simple way to create multi-player games based on Client-Server technology. It
consists of a Communicator which is supposed to run on a remote server and a couple of DLLs to
be used by client programs (Unity based user interface, implementing all necessary visual effects)
and by a game server (server-side application, implementing the game logic). The DLLs perform all
necessary data exchange between the clients and the game server via Communicator:

Q - Client
Client 4

4 '
W - A
Client . A
» -
C - Communicator .‘Q

Client
Game Server

In real environment the Game Server and Communicator usually run on the same remote host, when
the Client applications run on player’s PCs connecting to the Communicator using TCP/IP. It’s
possible to run all the components (Clients, Communicator, Game Server) on the individual hosts or
run all of them on the same host (what is useful for developing/debugging).

All the connections between the components and communicator are handled automatically "under
the hood". The components automatically re-connect to the communicator if connection has been
lost by whatever reason.

The data exchange between the Clients and the Game Server is performed by sending/receiving
messages. Messages can be sent by Clients and Server. Receiving messages is arranged using
subscription mechanism. The MATRIX also has a convenient Request system, based on messaging:
a Client can send synchronous requests to the Server and get responses back.

A number of clients capable to connect the Communicator at the same time is limited only by a
number of threads available on the host machine for a process — it can be several thousands
depending on the hardware. If that’s not enough, you can run another communicator on a separate
host. This makes the system scalable. Currently it’s not possible to run more than one
communicator on the same host, but this may change soon.

Existing implementation has no internal encoding or password protection. Originally it's been
designed to work in local networks. It can be used for games safely — who wants to hack games?
Anyway, optional encoding/password protection are planned for the future releases.

Potentially, the framework can be used to create business distributed systems (it's where it's been
created and used initially).

The Package

The package contains 2 DLLs located in your Assets/MatrixClientServer folder. The
“CSMatrix.dll” is a C++ based API implementing all the necessary functionality to work with the
Communicator. You won’t work with this DLL directly, instead you’ll use “zStdCSLib.dll” what is
a C# wrapper over the exported functions of “CSMatrix.dll”.

The assembly “zStdCSLib.dll” has been build on Visual Studio 2017. It’s been tested and
successfully used with Unity 2018.3.0f2. Later versions of Unity and Visual Studio should not have
any problems with the MATRIX DLLs.

Existing implementation supports Windows only (Windows 7 and above). The Communicator for
Linux (Ubuntu/Mint) exists (you can access it for test purposes on host 139.162.234.7), but there is
no interface DLLs made yet (it is planned to do in the nearest future).

The Communicator program dcnNode.exe, the test applications and example projects can be
downloaded here.

Unzip "Applications.zip" and "ExampleProjects.zip" in a convenient location. Folder
"Applications" will contain two sub folders "Communicator" (with dcnNode.exe) and
"TestComponents".

Folder "ExampleProjects" contains several C# projects you can look at and build. To build the
example projects you'll need to add or fix references to "zStdCSLib.dll" in each of them. Each
project also has a "post build event" copying “CSMatrix.dll” into output folder. If you'd like to run
the built binaries you'll need to correct paths in these events to the location of “CSMatrix.dll” on
your PC. Basically, every MATRIX based application must have both DLLs in the same folder
where the executable is.

The MATRIX framework is targeted for C# programming. Potentially, the “CSMatrix.dll” can be
used by C++ code via accessing the exported functions directly (for those who’d like to write a
game server in C++), but this is not a subject of this document. I can add a convenient wrapper for
C++ if there is a number of requests to do so. Also, it's possible to program on C++ directly to write
applications for Linux and windows, but it's not a subject of this document either.

http://galaxy.magix.net/public/DCNDownloads.html

Quick Programming Guide

Let’s have a look at two simple components TestServer and TestClient in ExampleProjects folder.
They implement a very simple client-server application showing the main features of the MATRIX
package.

A game server is supposed to run on a remote host and be accessible by multiple clients (player’s
applications). The server is supposed to have only one running instance, when a client can have
thousands of them. The server usually performs a game logic and send messages to clients (players)
about the current state of the game (information about game object positions, their statuses and so
on). Also, the server executes different requests from clients.

The TestServer does very simple things: it can process a couple of requests and send a specific
message. Let’s have a look at the code:

class Program {
static void Main(string[] args)

{

// Initialize the matrix (note: only one instance of the server is allowed)
zx.matrix.CMatrixSubsystem.Start(
"TestServer", "1.1", zx.matrix.TComponentRunType.RUN_TYPE_SINGLE);

// Register returning server name
zx.matrix.CMatrixSubsystem.RegisterMethod("GetMyName", Method GetMyName);

// Register method sending test messages
zx.matrix.CMatrixSubsystem.RegisterMethod("SendMessages", Method_SendMessages);

// This is called when the component has connected to the node
zx.matrix.CMatrixSubsystem.Subscribe(

new zx.matrix.CEventConnected(),

(msg, addr) =>

{

// Set signal "initialized"
zx.matrix.CMatrixSubsystem.SetComponentState(zx.matrix.TComponentState.STATE_INITIALIZED);
Console.WriteLine("The Server is ready to work.");

3

zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);
// This is called when the component has disconnected from the node
zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CEventDisconnected(),
(msg, addr) => Console.WriteLine("The Server is waiting for connection..."),
zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);

}

The first line initializes the MATRIX system by calling "Start" method. Here you have to provide a
distinctive server name (here it’s “TestServer”), application version (optional parameter, here is
"1.1") and the application run type. If you don't provide the application version then by default a
"system" version will be used (what is most probably a version of your Unity!). Because we require
only one instance of the server, we pass “zx.matrix.TcomponentRunType.RUN_TYPE_SINGLE”.
Note: after calling "Start" the MATRIX will take care under the hood about all the connectivity
tasks with the communicator.

In the next two lines our server registers two methods: “GetMyName” and “SendMessages”. These
are requests which can be called by any client. We’ll look at the methods later.

Then, the server code makes subscriptions to existing “events”, provided by MATRIX. The event
handlers are called when the server is connected or disconnected to the communicator. You don’t
need to implement these events, but they are convenient to trigger some logic. In our example,
when the server connects to the communicator it sets its state to “sTate_iNiTiaLIZED” and writes in
console that’s it's “ready”. When the server is disconnected from the communicator (it may happen

if you have stopped the communicator or there is a network problem), it simply writes a message in
console.

Note, that state “stare_iNTiaLIZED” can be observed by client applications (this will be shown below).
The client app may inform a player about the game server status.

Also, successful connection to the communicator does not mean that the server is ready to work.
This is simple in our example. In real live, the server may load massive data from the database
or/and do some start up logic. The game server should set its state to “sTate_NiTIALIZED” when it’s
really ready to work!

When the TestServer has started it just waits for requests from clients. The server can process two
requests:

“GetMyName” - simply returns a name back to the requester:

// This dummy method just returns a name of the server
// in string output parameter "MyName"
static bool Method_GetMyName (
zx.pl.CPropertylList inParameters,
zx.pl.CPropertyList outParameters,
zx.CError outError)

outParameters.AddPropertyValue("MyName", "I am a Test Server");
return true;

}
Mind the syntax of the method handler. It must be a function returning a boolean and accepting 3

parameters:
* inParameters — list of input parameters
* outParameters — list of output parameters
* outError — error descriptor

In this case the method does not expect any input parameters. It puts output value “I am a Test
Server” into parameter “MyName” and returns success (true).

Another method “SendMessages” is more complicated:

// This dummy method starts sending TestMessage N times.
// A number of times is specified in a "long" parameter "Number"
static bool Method_SendMessages(
zx.pl.CPropertylList inParameters,
zx.pl.CPropertylList outParameters,
zx.CError outError)
{
// Get a number of messages to send
var number = inParameters.GetProperty("Number").DC.GetLongValue();
if (number <= @ || number > 1000)
{
outError.Error(string.Format(
"Invalid number of messages {0}. It has to be a number in range from 1 to 1000", number));
return false;

}

// Send messages of type "test".

// Each message contains one string field with info

var msg = new zx.matrix.CStdMessage("TestMsg", "Test");

var fldInfo = msg.Root.AddProperty(zx.pl.CDataContainer.TypeString, "Info");
for (var i = @; i < number; ++i)

fldInfo.DC.SetStringValue(string.Format("This is message {0} from {1}...", i + 1, number));
zx.matrix.CMatrixSubsystem.Send(msg);
} // for

return true;

}

It retrieves a number of messages for sending from input parameter “Number”. If this parameter is
out of bounds, it populates the error descriptor and returns ‘false’ indicating the failure.

If specified by the caller number of messages is fine, it creates a test message with name “TestMsg”
and category “Test”, adds a string field “Info” to this message, and then sends it the requested
number of times (setting field “Info” with information about message index).

Note, the TestServer "doesn’t know" who it is sending the messages to — it sends them to any
subscriber of the message “TestMsg/Test”, so, potentially, this message can reach many
destinations.

Our example TestServer never stops. To stop it, you can close the console window.

)

Ideally, the game server should quit gracefully. You can implement a specific method “StopServer’
and call it, say, from a game master admin tool. Such a method may look so:

static bool Method_StopServer(
zx.pl.CPropertylList inParameters,
zx.pl.CPropertyList outParameters,
zx.CError outError)

zx.matrix.CMatrixSubsystem.Stop();
return true;

Let’s have a look at the TestClient application which interacts with the TestServer.

class Program {
const int NumberOfRequestedMessages = 500;
static int NumberOfReceivedMessages 0;
static System.Threading.ManualResetEvent AllMessagesReceived =
new System.Threading.ManualResetEvent(false);

static void Main(string[] args)

{
// Initialize the matrix
zx.matrix.CMatrixSubsystem.Start("TestClient", "1.1");

// Subscribe for test messages sent by the server
// This subscription is "not blocking": it guarantees that MsgHandler_TestMsg will never
// be called in race condition
zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CStdMessage("TestMsg", "Test"),
new zx.matrix.ProcessHandle(MsgHandler_TestMsg));

// Connection events examples
// This is called when the component has connected to the node
zx.matrix.CMatrixSubsystem.Subscribe(

new zx.matrix.CEventConnected(),

(msg, addr) =>

Console.WritelLine(
"CONNECTED HAS TO " + zx.matrix.CMatrixSubsystem.GetMasterAddress().GetFullName()),

zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);
// This is called when the component has disconnected from the node
zx.matrix.CMatrixSubsystem.Subscribe(

new zx.matrix.CEventDisconnected(),

(msg, addr) => Console.WritelLine("DISCONNECTED"),

zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);

// Wait for server initialization (with literaly unlimited timeout)
Console.WriteLine("Waiting for TestServer initialization...");
zx.matrix.CMatrixSubsystem.WaitForComponentInit("TestServer", uint.MaxValue);

// Ask server name
Console.WritelLine("Asking server name...");

One can see that the first line in Main() is MATRIX initialization
“zx.matrix.CmatrixSubsystem.Start("TestClient", "1.1")”. By default method “Start” uses
“zx.matrix. TcomponentRunType. RUN_TYPE_MULTI” - that is what we need, we want to be able
starting multiple clients.

10

Then the TestClient subscribes for messages sent by the TestServer, setting as a handler method
“MsgHandler_TestMsg”:

zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CStdMessage("TestMsg", "Test"),
new zx.matrix.ProcessHandle(MsgHandler_TestMsg));

Then follow two event subscription commands “zx.matrix.CMatrixSubsystem.Subscribe(new
zx.matrix.CeventConnected...” and “zx.matrix.CMatrixSubsystem.Subscribe(new
zx.matrix.CEventDisconnected...”. They just trace the facts of connection/disconnection to the
communicator.

After that the client consider itself “initialised” and waits for the TestServer to be “initialised” with
unlimited timeout: “zx.matrix.CMatrixSubsystem.WaitForComponentInit("TestServer",
uint.MaxValue);”. The MATRIX will report to the client application when a component with name
“TestServer” will have “state_iNniTiaLIZED”. As soon as it happens, the TestClient calls server’s
method “GetMyName” sending a synchronous request:

if (zx.matrix.CMatrixSubsystem.SynchRequest (
aComponentName: "TestServer",
aMethodName: "GetMyName",
aInParameters: new zx.pl.CBranch(),
outParameters: ref outParams,
outError: ref outError,
aPriority: zx.matrix.Tpriority.PRIORITY_HIGHEST)

A synchronous request blocks program execution till response has come or timeout is reached. By
default method “zx.matrix.CmatrixSubsystem.SynchRequest” has unlimited timeout. The method
returns "true" if successful response received or "false" (with outError set) if request has failed by
whatever reason (timeout, network error, error generated by the server...). In a case of success
makes sense to check outParameters if any return values are expected. In our case we expect a
“server name” returned in outParameter “MyName” - the code simply prints it out:

// Executed ok
Console.WriteLine(
"Server name is: " + outParams.GetProperty("MyName").DC.GetStringvValue());

After asking a server name the TestClient requests the server to send a number of messages. It
makes two calls: the first one should fail, because a number of messages is too big. This
demonstrates how error is processed and returned by the server. The second call does it right asking
to send 500 messages (this number is stored in constant “NumberOfRequestedMessages”), what is
accepted by server:

inParams.GetProperty("Number").DC.SetLongValue(NumberOfRequestedMessages);
if (zx.matrix.CMatrixSubsystem.SynchRequest(

aComponentName: "TestServer",

aMethodName: "SendMessages",

aInParameters: inParams,

outParameters: ref outParams,

outError: ref outError,

aPriority: zx.matrix.TPriority.PRIORITY_HIGHEST))

// Request sent successfully: wait till we receive all messages
Console.WriteLine("Waiting for receiving the messages...");
AllMessagesReceived.wWaitOne();

Console.WriteLine("All messages have been received. Mission complete, quitting...");

11

Note, if the call is successful, the client waits for signalled event “AllMessagesReceived”, set by
method “MsgHandler_TestMsg” - subscription handler for the “TestMsg/Test”.

Let’s have a look at this handler:

// Message handler for test Message
private static void MsgHandler_TestMsg(zx.matrix.CMessage aMsg, zx.matrix.CAddress aAddr)

{

// We use "shared resource" NumberOfReceivedMessages here, but no need to care about
// locking, because the subscription was done as "non blocking"
++NumberOfReceivedMessages;

// Decerialize the message
var msg = zx.matrix.CStdMessage.Deserialize(aMsg);
Console.WritelLine(
string.Format(
"==> Received message {0}/{1} from {2}. Info: '{3}'",
NumberOfReceivedMessages, NumberOfRequestedMessages,
aAddr.GetFullName(),
msg.GetFullType(),
msg.Root.GetProperty("Info").DC.GetStringvValue()));
if (NumberOfReceivedMessages >= NumberOfRequestedMessages)

// All messages received: flag the event
AllMessagesReceived.Set();

}
}

The method counts a number of received messages by incrementing
“NumberOfReceivedMessages”. Note, the received message must be explicitly de-serialised from
an abstract “zx.matrix.Cmessage” class:

var msg = zx.matrix.CstdMessage.Deserialize(aMsq);

Only after de-serialization variable “msg” will have all fields sent by the server. The code simply
prints the info field out and checks a number of received messages reaches the number of requested
messages. As soon as it happens, the event “AllMessagesReceived” is triggered.

After that, the TestClient considers its mission as “done” and quits:

// Inform anybody who's interested about finishing

var msgInfo = new zx.matrix.CStdMessage("TestMsgFinishInfo", "Test");
msgInfo.Root.AddPropertyValue("NumberOfReceivedMessages", NumberOfReceivedMessages);
zx.matrix.CMatrixSubsystem.Send(msgInfo);

zx.matrix.CMatrixSubsystem.Stop();

But before quitting it sends another message to any subscriber (not presented in the examples) about
successfully fulfilled job (in reality, TestSertver/TestClient participate in one of the automated tests
of the MATRIX system and this “TestMsgFinishInfo” message is caught by the test program).

That's it. In these examples the TestClient demonstrates abilities to request the TestServer, and
makes it to fulfil some actions (like sending messages); the TestServer implements the requests and
sends messages to TestClient(s). Running many TestClients is possible, but it will break their logic
(in a way the logic is written). This is only a brief example of how the coding looks.

12

MATRIX API
You have access to the MATRIX functionality via the API provided by “zStdCSLib.dll”.

13

API Methods

All the API functions are static public methods of class “CMatrixSubsystem”. Here are all the API
methods in alphabetic order.

ForceSaveConfig

Signature:
public static void ForceSaveConfig() {...}

Description:

Forces saving changes made by "SetCfgltem" calls into the configuration file. When you call
"SetCfgltem" the data are not saved into the configuration file immediately. The MATRIX
framework just notes the changes been made and does the save when you gracefully quit the
application. You may want to save the changes straight away to avoid loosing your changed data
due to unexpected application crash or PC reboot.

Example:

// Set up default configuration
var hostAliases = zx.matrix.CMatrixSubsystem.GetCfgItem(CfgItemPath_DCNNostAliases);
if (string.IsNullOrEmpty(hostAliases))

zx.matrix.CMatrixSubsystem.SetCfgItem(CfgItemPath_DCNAvailableHosts, DefaultAvailableHosts);
zx.matrix.CMatrixSubsystem.SetCfgItem(CfgItemPath_DCNNostAliases, DefaultHostsAliases);
zx.matrix.CMatrixSubsystem.ForceSaveConfig();

}

14

GetConfigltem

Signature:
public static unsafe string GetCfgItem(string aPath) {...}

Parameters:
* aPath (string): a path to configuration item (like "DCN.AvailableHosts") in the config file
Description:

This function allows you to retrieve a specific configuration item from the configuration file. If the
configuration item does not exist, the function returns empty string.

Example:

var availableHosts = zx.matrix.CMatrixSubsystem.GetCfgItem("DCN.AvailableHosts");

15

GetMasterAddress

Signature:
public static CAddress GetMasterAddress() {...}

Description:
This method returns an address the component it is connected to. It's a communicator address.

"CAddress" is a class with 3 fields:

Example:

16

GetSysteminfo

Signature:
public static CP1SystemInfo GetSystemInfo() {...}

Description:
Returns a property containing the system information.

The system information contains data about all the components, connected to the communicator and
messages these components are subscribed to. This may be interesting for specific admin
components like monitors (see ExampleProjects/dcnMonitor).

"CPISystemInfo" is a container with two branches "Components" and "Messages":

public class CP1lSystemInfo : zx.pl.CPropertyList {
// Field names
public const string FldComponents = "Components";
public const string FldMessages = "Messages";

// Extractors
public zx.pl.CPropertyList Components

get { return FindPropertyV(FldComponents); }

public zx.pl.CPropertylList Messages

{
get { return FindPropertyV(FldMessages); }

Branch "Components" holds information about all the components currently connected to the
communicator. Each item stored in "Components" is a property list of type
"zx.matrix.CPlComponentDesc" with following fields:

public class CPlComponentDesc : zx.pl.CPropertyList {
// Field names

public const string FldSessionID "SessionID";

public const string FldType = "Type";
public const string FldName = "Name";
public const string FldRank = "Rank";
public const string F1ldRunType = "RunType";
public const string FldStartTime = "StartTime";
public const string FldState = "State";
public const string FldPort = "Port";

public const string FldHostName "HostName";
public const string FldParameters = "Parameters"; // Additional parameters

The best way to understand these fields is to look at ExampleProjects/dcnMonitor project and see
how they are used there.

Branch "Messages" contains information about the messages subscribed by different components.
This sort of data is quite specific and I omit the details in this document.

Example:

Here is an implementation of "WaitForComponent" (see below) MATRIX method, using
"GetSystemInfo":

public static bool WaitForComponent (
string aComponentName, zx.matrix.TComponentState aState, uint aTimeOutMs)

{
const int _time_period = 500;
for (int t = O; !IsStopping() && t <= aTimeOutMs; t += _time_period)

CP1ComponentDesc desc = GetSystemInfo().FindComponent(aComponentName);

17

18

RegisterMethod

Signature:

public static void RegisterMethod(
string aMethodName, ProcessOMMethodHandle aHandler) {...}

Parameters:

e aMethodName (string): method name

* aHandler (ProcessOMMethodHandle): methods handler
Description:

This function is used to register a named method which can be called remotely from another
application via network. In the most cases the methods are implemented on the server side and they
are called by the clients.

ProcessOMMethodHandle is a delegate type where you are supposed to implement the method's
logic:

public delegate bool ProcessOMMethodHandle(
zx.pl.CPropertyList inParameters, zx.pl.CPropertylList outParameters, zx.CError outError);

"inParameters" is a container of input parameters. "outParameters" is a container of what the
method returns to the caller. The method should return "true" in success and "false" in error case. In
the error case "outError" is expected to be populated by error details.

Examples:

Working examples of method implementation could be found in TestServer project (see
ExampleProjects/TestServer). Registration:

// Register returning server name
zx.matrix.CMatrixSubsystem.RegisterMethod("GetMyName", Method_GetMyName);

// Register method sending test messages
zx.matrix.CMatrixSubsystem.RegisterMethod("SendMessages", Method_SendMessages);

...and implementation:

// This dummy method starts sending TestMessage N times.
// A number of times is specified in a "long" parameter "Number"
static bool Method_SendMessages(

zx.pl.CPropertylList inParameters,

zx.pl.CPropertylList outParameters,

zx.CError outError)

// Get a number of messages to send
var number = inParameters.GetProperty("Number").DC.GetLongValue();
if (number <= @ || number > 1000)
{
outError.Error(string.Format(
"Invalid number of messages {0}. It has to be a number in range from 1 to 1000", number));
return false;

}

// Send messages of type "test".

// Each message contains one string field with info

var msg = new zx.matrix.CStdMessage("TestMsg", "Test");

var fldInfo = msg.Root.AddProperty(zx.pl.CDataContainer.TypeString, "Info");
for (var i = 0; i < number; ++i)

fldInfo.DC.SetStringValue(string.Format("This is message {0} from {1}...", i + 1, number));
zx.matrix.CMatrixSubsystem.Send(msg);

One can see that this method checks expected parameters (here just one parameter "Number"),
returns error if the parameter is incorrect, does some work (sends messages) and returns "true" if the
parameter is correct. It returns no output parameters to the caller.

This simple method returns to the caller one output parameter "MyName" and always succeeds:

As you may notice a set of input and output parameters entirely depends on the implementation of
the methods and a way how they are called. Methods implementations should check the input
expected parameters and their values. The caller side should provide expected parameters for the
called methods. There is no internal checks for "not expected" parameters (at least in the present
implementation of the MATRIX). You may add your own if necessary.

Methods also can be implemented as lambdas at the registration point like:

20

Send

Signature:

public static bool Send(CMessage aMsg, ESendType aSendType = EsendType.Normal)
{..}

Parameters:

* aMsg (CMessage): message

* aSendType (ESendType): type of sending
Description:

Sends a message to any recipients subscribed to it. "aMsg" should be a message object derived from
"zx.matrix.CMessage".

"ESendType" is an enum:

public enum ESendType { ToMe, Normal };
"ESendType.ToMe" means that the message is sent internally — it will not leave the application.
Internal messages are useful to notify other parts of the application about something. They are also
called "events".

"ESendType.Normal" - is a default sending mode when the message goes via network to all the
components subscribed to it.

Examples:

From TestClient project (see ExampleProjects/TestClient):

// Inform anybody who's interested about finishing

var msgInfo = new zx.matrix.CStdMessage("TestMsgFinishInfo", "Test");
msgInfo.Root.AddPropertyValue("NumberOfReceivedMessages", NumberOfReceivedMessages);
zx.matrix.CMatrixSubsystem.Send(msgInfo);

From TestSender project (see ExampleProjects/TestSender):

// Create a message
zx.matrix.CStdMessage msg = new zx.matrix.CStdMessage("test");
for (int i = 1; i <= n && mIsSendingEvent.WaitOne(@, true); i++)
{
zx.pl.CPropertyList p = msg.Root.AddProperty(zx.pl.CDataContainer.TypeString, "text");
p.DC.SetStringValue(i.ToString() + " " + txtMsg.Text);
CMatrixSubsystem.Send(msg);
labelNumberOfSent.Text = "Sent " + i.ToString() + " from " + n.ToString();
} // for

21

SendToMe
Signature:
public static bool SendToMe(CMessage aMsg) {..}

Parameters:

* aMsg (CMessage): message
Description:
Sends message internally (basically it’s a Send call with aSendType == “EsendType.ToMe”).
Example:

(Taken from a unit test. It also demonstrates creation of a complex message)

CMatrixSubsystem.SendToMe

23

SetAvailableHosts

Signature:
public static void SetAvailableHosts(string aHosts) {...}

Parameters:
* aHosts (string): comma separated list of available hosts like "localhost,139.162.223.8"
Description:

Call "SetAvailableHosts" if you'd like to configure available hosts programmatically (rather than
manually changing the configuration file) from your application.

More details about available hosts one can find in Configuration topic.
Example:

(Taken from TestReceiver project — see ExampleProjects/TestReceiver)

private void btnConnectionApply Click(object sender, System.EventArgs e)
{
// Here I lock the button to avoid of friquent clicking
btnConnectionApply.Enabled = false;
CMatrixSubsystem.SetAvailableHosts(tbAvailableHosts.Text);
System.Threading.Thread.Sleep(2000);
btnConnectionApply.Enabled = true;

24

SetHostAliases

Signature:

public static void SetHostsAliases(string aHostsAliases) {...}

Parameters:

* aHostAliases (string): comma separated list of host aliases like
"ubuntu:139.162.233.2,MyRemoteHost:139.162.212.3"

Description:

Call "SetHostsAliases" if you'd like to configure the host aliases programmatically (rather than
manually changing the configuration file) from your application.

More details about available hosts one can find in Configuration topic.

Example:

zx.matrix.CMatrixSubsystem.SetCfgItem(CfgItemPath_DCNNostAliases, DefaultHostsAliases);

25

SetComponentState

Signature:
public static void SetComponentState(TComponentState aState) {...}

Parameters:

* aState (zx.matrix.TComponentState): a component state
Description:
Forcibly changes a state of your component to "aState".

The MATRIX framework automatically changes the state of your component to "STATE STOPPED"
or "STATE_STARTED". However, you might want to set the state to "STATE_INITIALIZED" when the
component is ready to work or to "STATE_ERROR", if the component is in error state and can't
normally operate.

Only these states are "officially" recognised by the MATRIX framework:

STATE_ERROR
STATE_STOPPED
STATE_STARTED

_1,

0,

1, // is set automatically, when created
STATE_IDLE 2, // is set, when a component is in idle state
STATE_INITIALIZED 222 // must be set by user application

Any other integers are possible, but will not be recognised by other components, like "dcnMonitor",
for example.

Example:

This component is happy to set itself to "initialized" when it's connected to the communicator:

// This is called when the component has connected to the node
zx.matrix.CMatrixSubsystem.Subscribe(

new zx.matrix.CEventConnected(),

(msg, addr) =>

// Set signal "initialized"
zx.matrix.CMatrixSubsystem.SetComponentState(zx.matrix.TComponentState.STATE _INITIALIZED);
Console.WriteLine("The Server is ready to work.");

i

zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);

26

SetConfigltem

Signature:

public static void SetCfgItem(string aPath, string aNewValue) {...}

Parameters:

* aPath (string): a path to configuration item (like "DCN.AvailableHosts") in the
configuration file

* aNewValue (string): new value of the configuration item.
Description:

This function allows you programmatically change a specific configuration item in the
configuration file.

If the configuration item does not exists, it will be added to the configuration with the new value.

Example:

// Set up default configuration

var hostAliases = zx.matrix.CMatrixSubsystem.GetCfgItem(CfgItemPath_DCNNostAliases);

if (string.IsNullOrEmpty(hostAliases))

{
zx.matrix.CMatrixSubsystem.SetCfgItem(CfgItemPath_DCNAvailableHosts, DefaultAvailableHosts);
zx.matrix.CMatrixSubsystem.SetCfgItem(CfgItemPath_DCNNostAliases, DefaultHostsAliases);
zx.matrix.CMatrixSubsystem.ForceSaveConfig();

}

27

Start

Signature:

public static void Start(string aComponentName, TComponentRunType aRunType) {..}
public static void Start(string aComponentName) {...}

Parameters:

* aComponentName (string): a name of the component

* aRunType (TComponentRunType): a component run type
Description:

Call Start to initialise the MATRIX in your application. Provide a sane not empty component name.
Passing empty string will cause assigning to the component a name
“___ANONYMOUS_COMPONENT___”, what is definitely not what you want.

TComponentRunType is an enum:

// Supported component run types

public enum TComponentRunType {
RUN_TYPE_MULTI = 0, // only one instance of a component with a specific name can be running
RUN_TYPE_SINGLE = 1 // any number of instances is allowed (default)

}; // TComponentRunType

Use RUN_TYPE_MULTI for the client applications (your game interface) which supposed to have
any number of instances and RUN_TYPE_SINGLE for the game server.

The Start call initializes the MATRIX component and automatically connects/reconnects it to the
communicator when it becomes available. Call Start() before calling any other API methods. Only
one Start() call can be done in your application — attempts to call Start() again are ignored by
internal logic.

Examples:

// Initialize the matrix (note: only one instance of the server is allowed)
zx.matrix.CMatrixSubsystem.Start("TestServer", zx.matrix.TcomponentRunType.RUN_TYPE_SINGLE);

28

Stop

Signature:
public static void Stop() {..}

Description:

Stop() gracefully stops the MATRIX component (disconnects it from the communicator, shuts down
all internal threads and so on). Call Stop before quitting your application.

After calling Stop() you won’t be able to start MATRIX by calling Start() again (at least it’s not
intended and behaviour in such case is not guaranteed).

29

Subscribe

Signature:

public static System.Guid Subscribe(
CMessage aMsg, ProcessHandle aHandle,
ESubscriptionType aSubscriptionType = ESubscriptionType.Message,
bool aIsBlocking = false) {..}

Parameters:
* aMsg (CMessage): message to subscribe
* aHandle (ProcessHandle): message handler (called when message received)
* aSubscriptionType (EsubscriptionType): type of subscription
* alsBlocking (bool): is message handler blocking or not
Description:

Method Subscribe is used to catch the messages of specific type and process them by a specified
message handler. A message class you are subscribing for is specified by parameter “aMsg”. It must
be derived from “zx.matrix.CMessage” class.

“aHandle” is a delegate of type “ProcessHandle”:

public delegate void ProcessHandle(CMessage aMsg, CAddress aSender);
You may well use lambda here.

Subscription type is an enum:

public enum ESubscriptionType { Event, Message };

Use “ESubscriptionType.Event” to subscribe for internal MATRIX events and
“ESubscriptionType.Message” to subscribe for external messages (sent by other components via
network).

Parameter "alsBlocking" may affect performance of the message processing. Method "Subscribe"
expects "the worse" and processes every single incoming message in a separate thread. It's been
done to avoid possible blocking the message flow by a bad behaving handler which may block (on a
mutex or event waiting for example) and wait for something. This also means, that potentially all
message handlers are called concurrently and therefore any shared data must be protected (by using
the same mutex or so...). If you know that your message handler is simple and never blocks,
subscribe with "alsBlocking = false". This will guarantee, that message handlers of this type will be
called using one after another. You also don't need to protect shared data in such handler. Using
"alsBlocking" as "false" is a sort of a contract between you and the MATRIX: you "promise" that
your code will be fast and non blocking. If you cheat, your system may stuck in the internal
message processing queue.

Method subscribe returns a Guid — unique id of the subscribed message. This id can be used later to
explicitly unsubscribe from the message, if necessary.

30

Examples:

Events subscriptions (blocking by default):

Non blocking message subscription:

Blocking message subscription using lambda:

31

SynchRequest

Signature:

public static bool SynchRequest(
string aComponentName,
string aMethodName,
zx.pl.CPropertyList aInParameters,
ref zx.pl.CPropertyList outParameters,
ref zx.CError outError,
string aObjectPath = "",
uint aTimeOutMs = DefaultTimeoutMs,
TPriority aPriority = zx.matrix.TPriority.PRIORITY NORMAL) {...}

Parameters:

* aComponentName (string): a name of a MATRIX component (assigned when calling Start
method)

* aMethodName (string): a name of a method to be called

* alInParameters (zx.pl.CPropertyList): container of input parameters
* outParameters (zx.pl.CPropertyList): container of output parameters
* outError (zx.CError): result error descriptor

* aObjectPath (string): path to the object method owner inside the component. Empty string
“” means that the component itself is a holder of the method

* aTimeOutMs (uint): timeout in milliseconds. Default value is DefaultTimeoutMs=30000 (30
seconds)

* aPriority (TPriority): priority of the request
Description:

SynchRequest calls a method of another MATRIX component (registered by RegisterMethod) via
network. The program execution halts till a response has come back or timed out.

"aObjectPath" is necessary if the method belongs to a sub-object of the calling component. For
example, a component "TraceCollector" may have internal object "Configuration" which has
method "Setltem". In this case, a call would look so:

zx.matrix.CMatrixSubsystem.SynchRequest (
aComponentName: "TraceCollector",
aMethodName: "SetItem",
aObjectPath: "Configuration"

“TPriority” is an enum:

public enum TPriority {

PRIORITY_LOWEST =0,

PRIORITY_BELOW_NORMAL = 127,
PRIORITY_NORMAL = 128,
PRIORITY_ABOVE_NORMAL = 129,
PRIORITY_HIGHEST = 255

}; // TPriority
Using priority > “PRIORITY_NORMAL?” ensures the request will avoid any internal queueing and
will be executed faster.

Example:

32

From TestClient project (see ExampleProjects/TestClient):

33

Trace

Signature:
public static void Trace(string aMsg) {...}

Parameters:

* aMsg (string): a string to be written in a trace file
Description:
Writes a string into a trace file (see Trace for details)

Example:

CMatrixSubsystem.Trace("+++ +++ NUMBER OF PROCESSING HANDLERS=" + mProcessorsNum.ToString());

34

Unsubscribe

Signature:

public static void Unsubscribe(System.Guid aSubscriptionID) {..}

Parameters:
* aSubscriptionID (System.Guid): id of a message subscription to unsubscribe
Description:

Call Unsubscribe to explicitly unsubscribe a specific subscription. If such subscription exists, the
internal message processor will remove the subscription. If subscription doesn't exist, nothing will
happen.

Normally you don't need to unsubscribe the messages during your application live time. What may
happen is you created a subscription with a handler which is going to be destroyed (you close a
window, for example, which processes a message). In this case before the handler is destroyed you
must unsubscribe the handler associated with the message, otherwise, if message comes, the internal
message processor will call a destroyed handler with very bad consequences...

Examples:

This example is taken from dcnMonitor example project:
private void FormComponents_Closing(object sender, System.ComponentModel.CancelEventArgs e)
// Unsubscribe from the messages

CMatrixSubsystem.Unsubscribe(mId_CMsgSystemInfo);
}

Here, a form of components, subscribed to system info message is closing, hence — a correspondent
handler should be removed.

35

WaitForComponent

Signature:

public static bool WaitForComponent(
string aComponentName, zx.matrix.TComponentState aState, uint aTimeOutMs)
{...}

Parameters:

* aComponentName (string): a name of a MATRIX component (assigned when calling Start
method)

* aState (zx.matrix. TComponentState): a component state
* aTimeOutMs (uint): timeout in milliseconds
Description:

This function blocks further execution till a specified by name component has a state "aState", or a
time out occurs. "zx.matrix.TComponentState" is an enum:

public enum TComponentState {
STATE_ERROR -1,
STATE_STOPPED o,
STATE_STARTED 1, // is set automatically, when created
STATE_IDLE 2, // 1is set, when a component is in idle state
STATE_INITIALIZED 222 // must be set by user application

}; // TComponentState

Example:

Here we are waiting for "STATE_INITIALIZED" from another more popular method:

public static bool WaitForComponentInit(string aComponentName, uint aTimeOutMs)

return WaitForComponent (
aComponentName, zx.matrix.TComponentState.STATE INITIALIZED, aTimeOutMs);

36

WaitForComponentinit

Signature:
public static bool WaitForComponentInit(string aComponentName, uint aTimeOutMs)

{...}
Parameters:

* aComponentName (string): a name of a MATRIX component (assigned when calling Start
method)

* aTimeOutMs (uint): timeout in milliseconds
Description:
This is a specialization of "WaitForComponent" waiting for state "STATE_INITIALIZED".

Example:

// Wait for server initialization (with literaly unlimited timeout)
Console.WriteLine("Waiting for TestServer initialization...");
zx.matrix.CMatrixSubsystem.WaitForComponentInit("TestServer", uint.MaxValue);

37

Property List

Property list is a universal container widely used in MATRIX to transfer structured data. It's used in
CStdMessage, in the requests input/output parameters and so on.

A property list is a tree-like container, where each element ("property") has name and a Data
Container (actually a value) of a specific type, and also it may have a list of other properties.

MATRIX "knows" how to serialize/de-serialize the property lists in order to transfer it via the
network.

The class contains the following important members:

public class CPropertylList {
// Name
public string Name = "";
// Data container
public CDataContainer DC;
// List of properties
private SortedList mList = new SortedList();

"Name" - is a property list name. It may contain Latin letters, digits, underscores.

"DC" - is a data container — holds a value of the property list. The DC must have one of the types
listed below (see Data Types).

"mList" (private member shown for reference) - is a list of member properties. Each property in the
list has a unique name, not necessarily equal to the name of the property itself (See "AddProperty"
methods)

38

Data Types
Only the following data types are supported by the MATRIX:

. // Basic data types (C++ property lists compatible)
public const string TypeVoid "void";

public const string TypeBranch = "branch"; // for branches only
public const string TypeLong = "long";

public const string TypeInt64 = "int64";

public const string TypeBool = "bool";

public const string TypeDouble = "double";

public const string TypeString = "string";

public const string TypeDate = "date";

public const string TypeUID = "uid";

It's possible, but not recommended to invent your own types. At least it's not currently explained in
this document how to do it properly.

TypeVoid

An "empty" type with no data. Sometimes property lists of such a type are useful as "flag" fields or
empty results.

TypeBranch

"Branches" are designed to hold other properties. They have no values.
TypeLong

Holds a signed 32 bit integer
Typelnt64

Holds a signed 64 bit integer
TypeBool

Holds a boolean value (true or false)
TypeDouble

Holds a signed double value
TypeString

Holds a string value of any length
TypeDate

Holds "System.DateTime" value
TypeUID

Holds "System.Guid" value

Although, only "TypeBranch" is recommended to hold other property lists, it is not forbidden to add
properties to any type, say "TypeLong".

All these types are specified in the "CDataContainer" class — a property lists value holder.

39

The abstract "CDataContainer" class looks so:

It has getters and setters for "basic" value types. The class itself contains "empty" value and
represents "TypeVoid". The data containers for all supported types are derived from
"CDataContainer" overriding the virtual methods to deal with specific type values.

40

CPropertyList Methods

CPropertyList (constructor)

Signature:
public CPropertyList(string aType, string aName) {...}

Parameters:
* aType (string): a type of the property (must be one of the listed above types)
* aName (string): property name
Description:
Creates a property list of specific type and name. Not registered type will cause an exception.
Example:

Taken from CStdMessage code: creates a root of the message

// Root property
public zx.pl.CPropertyList Root =
new zx.pl.CPropertyList(zx.pl.CDataContainer.TypeVoid, "Root");

41

AddProperty

Signature:
public CPropertylList AddProperty(string aType, string aName) {...}
public CPropertyList AddProperty(string aName, CPropertyList aPl) {...}
public CPropertylList AddProperty(CPropertyList aPl) {...}
Parameters:
* aType (string): a type of the property (must be one of the listed above types)
* aName (string): property name
* aPl (CPropertyList): another property
Description:

Adds another property to the property list. Version "AddProperty(string aType, string aName)"
creates a new property of type "aType" and adds it. Version "AddProperty(string aName,
CPropertyList aPl)" adds existing property under name "aName". Note: "aName" can be different
from "aPl.GetName()". Version "AddProperty(CPropertyList aPl)" adds existing property using
"aPl.GetName()".

If the property list already contains a property with the specified name, the existing property is
removed first, then the new one is added.

mnmn

If property name is empty (""), an auto-generated name will be provided by method

"GetUniqueName()".
Examples:

Adding a property of "TypeUID" and assigning a new generated GUID:

var flduid = msg.Root.AddProperty(zx.pl.CDataContainer.TypeUID, "uid");
flduid.DC.SetStringValue(System.Guid.NewGuid().ToString());

Adding existing property:

var prop = pl.AddProperty(zx.pl.CDataContainer.TypeLong, "val");
msg.Root .AddProperty(prop); // same as msg.Root.AddProperty("val", prop)

42

AddPropertyValue

Signature:

public CPropertylList AddPropertyValue(string

public CPropertylList AddPropertyValue(string

public CPropertylList AddPropertyValue(string

public CPropertylList AddPropertyValue(string

public CPropertyList AddPropertyValue(string
{...}

Parameters:
* aName (string): property name
* aValue (*): property value of different types

Description:

aName,
aName,
aName,
aName,
aName,

int aValue) {...}
double aValue) {...}
bool aValue) {...}
string avalue) {...}
System.DateTime aValue)

Adds a new property to the property by name and value. A type of added property is defined by one
of the overloaded methods. The value is assigned to the added property.

Examples:

// Prepare input parameters

zx.pl.CPropertyList in_params = new zx.pl.CBranch();
// adds TypelLong property because aCount is 'int'
in_params.AddPropertyValue (PARAM_LOG_Count, aCount);
// adds TypeString property because alLang is 'string
in_params.AddPropertyValue (PARAM_LOG_Lang, aLang);

IS
w

AddBranch

Signature:

public CPropertylList AddBranch(string aName) {...}
public CPropertyList AddBranch() {...}

Parameters:
* aName (string): branch name

Description:

Adds a new property of TypeBranch to the property. Method's implementation tells for itself:

There is even a helper class "CBranch" derived from "CPropertyList" designed to simplify branches
creation:

Examples:

44

FindProperty

Signature:
public CPropertyList FindProperty(string aName) {...}

Parameters:
* aName (string): branch name
Description:
Returns a property by name. If property with such a name does not exist, returns null.

Examples:

45

FindPropertyV
Signature:

public CPropertyList FindPropertyV(string aName) {...}

Parameters:
* aName (string): branch name
Description:

Returns a property by name. If property with such a name does not exist, returns a property with
type void. This method never returns null. It's convenient when you fill up some output data and if
some expected fields don't exists, you just put empty data. It saves lot's of code by checking for null
in such cases.

Implementation is simple (pretty old c# to keep it compatible with everything — actually written
long ago...):

public CPropertylList FindPropertyV(string aName)

{
CPropertyList p = FindProperty(aName);
return p == null ? new CPropertyList(CDataContainer.TypeVoid, aName) : p;
}
Examples:
row[dataColumnID] =
rec.FindPropertyV(zx.matrix.log.CClient.LOGFLD_MessageID).DC.GetLongValue();
row[dataColumnText] =

rec.FindPropertyV(zx.matrix.log.CClient.LOGFLD_MessageText).DC.GetStringValue();

46

GetProperty

Signature:
public CPropertylList GetProperty(string aName) {...}

Parameters:
* aName (string): branch name
Description:

Returns a property by name. If property with such a name does not exist, throws exception. This
method is handy when a property with specific name must exist, and if it isn't, then operation should
fail.

Implementation is simple:

Examples:

47

DeleteProperty

Signature:
public void DeleteProperty(string aName) {...}

Parameters:

* aName (string): branch name
Description:
Removes a property by name. Returns nothing.

Implementation is trivial:

Example:

48

GetEnum

Signature:

public IDictionaryEnumerator GetEnum() {...}

Description:
Returns property list enumerator. Useful when it's necessary to loop over all internal properties.

Example:

Taken from ftMonitor (see ExampleProjects/dcnMonitor)

49

Count

Signature:
public int Count() {...}

Description:
Returns a number of sub-properties.

Example:

Taken from ftMonitor (see ExampleProjects/dcnMonitor)

50

Constructing, sending and receiving Messages

Use "CStdMessage" to construct any data you'd like to send via network.

"CStdMessage" has only one member — property list "Root". All you need to do is to add necessary
properties/branches to the Root, and... send the message. The other end will receive the message

with all Root content.

For every created "CStdMessage" you should specify message "Type" and "Category". The

recipient side should have a subscription to the correspondent "Type" and "Category" to process the

message.

Examples:

One application constructs and sends a bunch of messages of type "TestMsg" and category "Test":

// Send messages of type "test".

// Each message contains one string field with info

var msg = new zx.matrix.CStdMessage("TestMsg", "Test");

var fldInfo = msg.Root.AddProperty(zx.pl.CDataContainer.TypeString, "Info");
for (var i = 0; 1 < number; ++i)

fldInfo.DC.SetStringValue(string.Format("This is message {0} from {1}...", i + 1, number));

zx.matrix.CMatrixSubsystem.Send(msg);
Y // for...

Another application has a subscription for this message:

zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CStdMessage("TestMsg", "Test"),
new zx.matrix.ProcessHandle(MsgHandler_TestMsg));

Here "MsgHandler_TestMsg" looks so:

private static void MsgHandler_TestMsg(zx.matrix.CMessage aMsg, zx.matrix.CAddress aAddr)
{
// Decerialize the message
var msg = zx.matrix.CStdMessage.Deserialize(aMsg);
Console.WriteLine(
string.Format(
"==> Received message {0}/{1} from {2}. Info: '{3}'",
NumberOfReceivedMessages, NumberOfRequestedMessages,
aAddr .GetFullName(),
msg.GetFullType(),
msg.Root.GetProperty("Info").DC.GetStringValue()));

Note the "Deserialize" call: each message must be explicitly de-serialized as

"zx.matrix.CStdMessage" from the abstract "zx.matrix.CMessage" object. Only after that you'll

have access to the member "Root" with all data sent by the sender.

51

Using MATRIX in Unity

Initially, the MATRIX framework has been designed to be used in real production environment to
communicate different C# based application between the servers and each other. This has worked
successfully over the years.

But nothing really stops using it for gaming — it's simple and reliable.

52

Setting up the Environment

Make sure you have the MATRIX DLLs in Assets/MatrixClientServer folder after downloading the
package:

| = | MatrixClientServer - [m]
Home Share View
&« v A <« Work (\\vboxsrv) (E) » Dev » UnityProjects » GalawyViewer > Assets » MatrixClientServer v O Search Mat
~
‘i Local Disk () " MName Date modified Type Size
Perflogs Application extens... 2,722 KB
Program Files] CSMatrin.dil.meta META File 1 KB
Program Files (x86) | z5tdCSLib.dll Application extens... 60 KB
Temp | z5tdCSLib.dilmeta META File 1 KB

Unity will automatically catch up with “zStdCSLib.dll” - all it’s functions will be accessible in
your project:
| @ Project | a-=

Create ™ 2, |) | W
'EAssets

bﬁ_Scenes

» G AssetStoreTools

» &3 DualCorStudios

b &5 Editor
» InstantGui
G Materials

MatrixClientServe
[] csMatrix
[| zstdCSLib
» & Prefabs
» & Resources
b &5 Scripts
» & sLs
» &3 Space Graphics Toolkit
» 3 SpaceShipAssets
b &5 SpaceUnity
» &3 StreamingAssets
» &3 Textures

[] GalaxyAPI

[| GalaxyAPI

D galaxyAPI
» Gl Packages

In the Visual Studio (if you use it) you'll be able to see the assembly with all available public
methods by clicking F12 on any "zx.matrix.CMatrixSubsystem" signature:
File Edit View Project Build Debug Team Tools Architecture Test RTools Analyze Window Help
Q- @l [T 7 B Debug ~ AnyCPU - P Attach to Unity = _
CMatrixSubsystem [from metadata] & + X guHelpers.cs & gulReportDataProvider.cs & guDllinterface.cs &

[€#] zstdCsLib - *3 zx matrix.CMatrixSubsystem

1210|dx3 1an1ag

Elusing System;
using zx.pl;

x0q|oo|.

Elnamespace zx.matrix {

public class CHEEE xSubsystenﬂ {
public const string PARAM_ID = "ID";
public const string PARAM_InParameters =
public const ring PARAM_OutParameters
public const PARAM_ErrorMessage =
public const string PARAM_ErrorCode
public const uint DefaultTimeoutMs =

public CMatrixSubsystem() ;

public

public

public ng GetCSMatrixD11Version();
public GetMasterAddress();

53

Initializing the MATRIX in your game

The MATRIX framework should be started once (any attempt to start it again won't work and will
be ignored). I've found a reliable place to start the MATRIX in a static method with attribute
"[RuntimeInitializeOnLoadMethod (RuntimeInitializelLoadType.BeforeScenelLoad)]"

Here is a real example how to initialize the MATRIX in your Unity project:

1111777777777 7777777777777/777777//7/77/////1/////////////////////////////////
// Matrix initialisation (once per process)
[RuntimeInitializeOnLoadMethod(RuntimeInitializelLoadType.BeforeSceneLoad)]
public static void InitializeMatrix()
{

const string strDisconnected = "DISCONNECTED";

System.Action setDCNDisconnectedInfo =

() => stDCNConnectionUpdater.Set(

"DCN: " + strDisconnected, unx.Tools.FadeColour(Color.red, 1.5f));
setDCNDisconnectedInfo(); //<-- setting initial status Disconnected
SetGameServerStatusInfo(strDisconnected, zx.matrix.TComponentState.STATE ERROR);
try
{

GU.CReportFactory.Get().TraceInfo(

string.Format("STARTING MATRIX with name '{0}'...", ProductName));
zx.matrix.CMatrixSubsystem.Start(ProductName);
GU.CReportFactory.Get().TraceInfo("...0k");

// Here I set up default connection setting for the game, so the player could

// be able to connect to the communicator without any troubles

// Set up default configuration

var hostAliases = zx.matrix.CMatrixSubsystem.GetCfgItem(CfgItemPath_DCNNostAliases);

if (string.IsNullOrEmpty(hostAliases))

{
GU.CReportFactory.Get().TraceInfo("Setting up default configuration for MATRIX...");
zx.matrix.CMatrixSubsystem.SetCfgIltem(CfgItemPath DCNAvailableHosts, DefaultAvailableHosts);
zx.matrix.CMatrixSubsystem.SetCfgItem(CfgItemPath_DCNNostAliases, DefaultHostsAliases);
zx.matrix.CMatrixSubsystem.ForceSaveConfig();
GU.CReportFactory.Get().TraceInfo("...0k");

}

// Here are subscriptions for connected/disconnected events to update
// the status on the screen
// Subscribe to connection events
zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CEventConnected(),
new zx.matrix.CMethodMessageHandler (
(msg, sender) =>

GU.CReportFactory.Get().TraceInfo(string. Format(
"++++++++++++++++++++++DCN CONNECTED TO '{O0}'...",
zx.matrix.CMatrixSubsystem.GetMasterAddress(). GetFullName())),

stDCNConnectionUpdater.Set(
string.Format(

"DCN: Connected to '{06}'",
zx.matrix.CMatrixSubsystem.GetMasterAddress().GetFullName()),
unx.Tools.FadeColour(Color.green, 1.5f));
)

aSubscriptionType: zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);

zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CEventDisconnected(),
new zx.matrix.CMethodMessageHandler (
(msg, sender) =>

GU.CReportFactory.Get().TraceInfo("- - - - - - - - - - - DCN DISCONNECTED");
setDCNDisconnectedInfo();

1),

aSubscriptionType: zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);

// Catching "component state changed" event to update its status on the screen
zx.matrix.CMatrixSubsystem.Subscribe(

new zx.matrix.CEventComponentComponentStateChanged(),

new zx.matrix.CMethodMessageHandler (

54

(msg, sender) =>

var ev = new zx.matrix.CEventComponentComponentStateChanged(msg);
ev.Deserialize();
if (ev.ComponentDesc.Name == GameServerName)

if (ev.0ldState != ev.NewState)
Debug.Log(string.Format(
"'{0}' state changed from '{1}' to '{2}'",
GameServerName,
zx.matrix.SysComponentStateNames.Find(ev.0ldState),
zx.matrix.SysComponentStateNames.Find(ev.NewState)));
else
Debug.Log(string.Format(
"'{0}' state is '{1}'",
GameServerName, zx.matrix.SysComponentStateNames.Find(ev.NewState)));

SetGameServerStatusInfo(
zx.matrix.SysComponentStateNames.Find(ev.NewState),
(zx.matrix.TComponentState)ev.NewState);

}
1}

aSubscriptionType: zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);
} // try
catch (System.Exception e)

GU.CReportFactory.Get().TraceError(
string.Format("Failed to start MATRIX, reason: {0}'", e.Message));

In my Unity app the Communicator Status and Server status are displayed in the bottom left corner
of the screen:

Main Menu

Recent File Reports

Load File Report

Load/Update Report from server
Settings

About

Exit

"DCN" - is actually "the communicator". It shows that the app is already connected to the
communicator in address "ubuntu/1024" (host name/port).

"Galaxy Kings Server" - is my game server. It's not ready yet and it's status shown as
"DISCONNECTED".

A few moments later the picture changes to this:

55

Main Menu

Recent File Reports
Load File Report
LoadrUpdate Report from se

Settings
About
Exit

One can see that the MATRIX received a server initialised status and event handler has updated it
on the screen.

It's very trivial way to show the status and definitely can be done better.

A good place to disconnect from the MATRIX gracefully when you quit your application is in
"OnApplicationQuit" Unity overridden method:

private void OnApplicationQuit()

Debug.Log("STOPPING MATRIX...");
zx.matrix.CMatrixSubsystem.Stop();

}
It guarantees that the "Stop" will be called once when you quit.

56

Using SynchRequest

"zx.matrix.CMatrixSubsystem.SynchRequest" is a blocking call. It quits either when a response is
received or time outed. You can't do it from your game without freezing it. To avoid game freezing
you should call the "SynchRequest" asynchronously. A combination of coroutines and manual reset
event would do a good job.

I use coroutines to have a desirable effect. See the following code example:

zx.matrix.CMatrixSubsystem.SynchRequest

57

}

outParameters: ref outParams,
outError: ref err,
aTimeOutMs: 20000));
} // Action
}, // ActionDesc

// Waiting
new unx.Tools.CActionDesc()

{

Action = () =>

if (msgBox.GetMessage() != message)
msgBox.ChangeMessage(message) ;
+
HasFinished = () => mre.WaitOne(100, true) // looks as a good delay

3

// Processing result
new unx.Tools.CActionDesc()

Action = () =>

{
gk.HideProgressBar();
if (err.ok())

aResponseAction(outParams);

}

else

gk .GetComponent<MessageBox>().ShowError (
aParent: unx.Tools.FindCanvas().transform,
aMessage: err.ErrorMessage,
aonOk: () => gk.ShowMainMenuIfNoReport());
} // else (error)
} // Action
}
3

aTime: new WaitForSeconds(0.05f)); // this delay seem to be working fine

}
onCancel: () => gk.ShowMainMenuIfNoReport());

"ServerSynchRequest" is a wrapper showing a message box on the screen and running a set of
actions in coroutine. What it does is:

ask a question confirming a request to the game server (ok, in my case the request process
can take a long time due to the game specific, so I warn the players before committing to it)

When the player confirms the choice by clicking "Ok", it shows a message box "Processing
whatever on the server":

Processing GetReport on server

139.162.234.7

.
X

%

In the next action it calls "zx.matrix.CMatrixSubsystem.SynchRequest" wrapped in
asynchronous call "zx.Functions.AsynchCall" (see below) which returns a manual reset
event "mre".

Next coroutine action is waiting in a loop till the manual event is set. It will be set by
"zx.Functions.AsynchCall" as result of timeout or a successful return of "SynchRequest".

58

* The last action checks the result. Error variable "err" will be set in error state by
"SynchRequest" if any error happens. If we have no error, a response action
"aResponseAction" is called with outParameters, otherwise — error message is displayed.

Looks complicated, but in my case of possible long requests I wanted to give the players a chance
to interrupt them.

Here is an example of calling "ServerSynchRequest":

ServerSynchRequest

"zx.Functions.AsynchCall" looks trivial:

Function "unx.Tools.RunCoroutine" executes a series of actions in a coroutine. It's just a convenient
wrapper:

59

60

Message subscriptions

I don't have examples for message subscriptions done in Unity yet (apart from subscriptions to the
events) like here:

zx.matrix.CMatrixSubsystem.Subscribe(
new zx.matrix.CEventConnected(),
new zx.matrix.CMethodMessageHandler (
(msg, sender) =>

GU.CReportFactory.Get().TraceInfo(string. Format(
"++++++++++++++++++++++DCN CONNECTED TO '{O}'..."
zx.matrix.CMatrixSubsystem.GetMasterAddress(). GetFullName())),

stDCNConnectionUpdater .Set (
string.Format(

"DCN: Connected to '{0}'",
zx.matrix.CMatrixSubsystem.GetMasterAddress().GetFullName()),
unx.Tools.FadeColour(Color.green, 1.5f));

1),

aSubscriptionType: zx.matrix.CMatrixSubsystem.ESubscriptionType.Event);

It should be pretty much the same, only subscription type should be
"zx.matrix.CMatrixSubsystem.ESubscriptionType.Message".

There is an important thing to mention however: the event handlers passed to the MATRIX will be
called not in the Unity main execution thread, therefore it is not possible to manipulate the game
objects directly from these handlers. To do something with the game objects, the message handlers
should possibly launch coroutines or trigger some other events.

Real examples of message handling are expected in the next release of the MATRIX.

61

Using MATRIX in Visual Studio
To use MATRIX in your Visual Studio project you need to add a reference to "zStdCSLib.dll":

= A

&l TestComponents
b %l denTestComponent
b TestClient .
TestReceiver Embed Interop Ty False
4 =W References : :
Analyzers
=8 System
=8 System.Data
=B System.Drawing
=B System.Windows.

G

% Assemblylnfo.cs
Set "Copy Local" property to "true", so your assembly will have the dll in the same location.

It's also a good idea to set up a post build event in the project settings to automatically copy the
"CSMatrix.dll" into the binary folder, like here:

zMatrix.cs 8 # TestReceiver # X zFileTraceCfg.cpp @ zFileTraceCfg.h & zDcnPoint.cpp &

Application

N/A
Build
N/A
Build Fvents
Debug Post-build event command line:
Resources copy $(SolutionDin\Lib\src\CSMatrixDLL\$ (Platform)\$(Configuration\CSMatrix.dll

Here I make sure, that "CSMatrix.dll" is always copied into destination folder. After a successful
build the destination folder will look like here:

» Lib » test » TestReceiver » bin » x64 » Debug v D A Search Debug
~ Name Date modified Type
30/06/2021 14:43 Application extension
%TestReceiver 30/06/2021 14:43 Application

&) TestReceiver.pdb 30/06/2021 14:43 Program Debug Data...
| TestBeceiyer 01/07/2021 14:34 ZXS File

%] zStdCSLib.dll 30/06/2021 14:43 Application extension
&) zStdCSlib.pdb 30/06/2021 14:43 Program Debug Data...

...both dlls are here and you can simply start the application (TestReceiver here).

62

Communicator

The Communicator program denNode.exe is located in Applications/Communicator folder.

You can simply run it as a console application:

B EADeviMatrixClientServer\ Bim\EXE\dcnNode.exe - O
¥ .48 |i|#8:1 A

OLE mode

It’s waiting for incoming connections and periodically checking other communicators running on
the same host. Press ‘q’ to stop the console run gracefully.

Your Fire Wall may complain this way:

@ Windows Security Alert X

Windows Firewall has blocked some features of dennode on all public and private netwarks.

ﬂ Name: kcnnode
l— Publisher: Unknown

Path: C:\temp'testidcrnode. exe

Allow dennode to communicate on these networks:
Private networks, such as my home or work network

[Public netwerks, such as these in airports and cafés (not recommended
because these networks often have litle or no security)

E; Allow access Cancel

Just allow access and carry on.

63

On the real environment it makes sense to install the communicator as a Windows Service to make
it start automatically along with the host. To display command line options run “dcnNode -h”:

E:\Dev\MatrixClientServer\Bin\EXE>dcnNode.exe -h
Usage: dcnNode

-I [service name (default=all)] Service to install

-U [service name (default=all)] Service to uninstall

-V Version info

-P [service name):] [<param_name=param_value>, <param_name=param_value>...] Display/set
paramers

-PFORCE works only with -p: forces creatring cfg item if does not exist

-CFGEXP <filename[,destbranch[,srcbranch]] Exports configuration from <srcbranch> in a text
file <filename> in file's branch <destbranch>>

-CFGIMP <filename[,destbranch[,srcbranch]] Imports configuration from <srcbranch> from a
text file <filename> in configuration branch <destbranch>>

-H Help

To install a windows service simply type in command prompt “dcnNode -i” (make sure you are
running the command prompt as Administrator):

C:\Temp\Test>dcnNode.exe -i
DCN Node Daemon has been installed sucessfully

In the Services you’ll see:

L Services - O X

File Action View Help
ez EHEEE HE »mnwn

=

. Services (Local) Mame Description Status Startup Type Log On As A
5L COM+ Event System Suppoerts Sy.. Running Automatic Local Service
‘55 COM+ System Application Manages th.., Manual Local Syste...
£k Computer Browser Maintains a... Manual (Trig... Local Syste..
Gk Connected Devices Platfor.. Thisservice... Running Automatic (D.. Local Service
Lk Connected User Experience.. The Connec... Running Automatic Local Syste...
£k Contact Data_2452d Indexes con... Manual Local Syste...
& CoreMessaging Manages co... Running Autematic Local Service
£k Credential Manager Providesse.. Running Manual Local Syste...
‘G Cryptographic Services Providesthr.. Running Autematic Network 5.,
5 Data Sharing Service Provides da.. Running Manual (Trig... Local Syste..

£k DataCollectionPublishingSe... The DCP (D... Manual (Trig... Local Syste...

DCN Mode Daesmon Automatic Local Syste...
“£:DCOM Server Process Laun., The DCOM.. Running Automatic Local Syste...
&} Delivery Optimization Performs co... Automatic (D... Local Syste...
5 Device Association Service Enables pair.. Running Automatic (T.. Local Syste..
£k Device Install Service Enablesa c... Manual (Trig... Local Syste...
&k Device Management Enroll.. Performs D... Manual Local Syste...
Lk Device Setup Manager Enables the ... Manual (Trig... Local Syste..
£k DevQuery Background Disc... Enables app... Manual (Trig... Local Syste..
25 DHCP Client Registers an.. Running Automatic Local Service
£k Diagnostic Policy Service The Diagno.. Running Autematic Local Service
5k Diagnostic Service Host The Diagno... Running Manual Local Service
5. Diagnostic System Host The Diagno... Manual Local Syste... w

Extended)\ Standard /

Now, you can start/stop the communicator using this terrible app. Because it is set “Automatic” the
service will start every time you reboot the host.

To uninstall the communicator service do the following:

C:\Temp\Test>dcnNode.exe -u
DCN Node Daemon has been removed sucessfully

64

Test Components

In the folder Applications/TestComponents you can find a number of test components which can be
used to check the communicator is working correctly.

Run the communicator (dcnNode.exe — either as a console or as a service — doesn’t matter).

Run Monitor.exe:

a ftMonitor 2.12 (15.09.2009) vs2008 - O X
File Window

List of Components

== Connected to DESKTOP-243DN0E/1024 A

Monitor is a simple test program which shows all the components running in the current
environment. On the bottom left one can see a connection status with the communicator running on
the “localhost”. Click “List of Components button”:

ﬁ ftMonitor 2.12 (15.09.2009) vs2008 - O x
File Window

<

== Connected to DESKTOP-243DN0DE/1024 v

One can see two components are currently running on the system: the Monitor itself (ftMonitor) and
the communicator (__DCN Node...).

In the TestComponents folder there are also two simple applications TestSender and Test Receiver.
Run several instances of each:

65

File Window
= &
————————— &
State Name Type Start Time Stop Time Ad
| =
#=Connecte TestReceiver 2021.06.23 17:43.05 DE
2>~ Connecte TestReceiver 2021.0623 17:43.03 DE
4=Connecte TestReceiver 2021.06.23 17:49.02 DE
2= Connecte _ fiMonitor 2021.0623 17:4147 DE
==Connecte __DCH Mode on DESKTOP-243DNOE don node 20010623 17:41:21 DE
TestSender (v. 1.3, 06.01.2008) vs2008 - o X

aBuf Length 84 aBuff] 1= 0; i++)
5= CDHVEK TuChaHaEu'[])

onnected to DESKTOF|

Humber of messages. [100 Send Name
5
97 forfrti = outPos! < & &
98 forfrti =outPos;i Close Sk
(25 forinti = outPos: i e =M
. Aol 4] Documents [
& Downloads e
D Music &1
_ Toar manwer of messages 100 A
&= Pictures

Edencaly, Standard hummrmnmssaga per second 0 -

B videos |

S or i1~ ouPoni < b Longh 88 Bl - D1
ﬂing‘p::agjl ; ss cunven'ruc:wanaw[_ § CD Drive (D4 VirtualBox Guest Ad

Here I run 3 TestReceiver’s and one TestSender You can click button ‘Send’ on TestSender and see
all receivers have received 100 messages. You can also see that the monitor displays all the running

components.

L. Local Disk (C:)

The test components are useful to check connectivity of your real client-server environment. When
you have a communicator and game server running on a remote host, you may run the Monitor,
Sender and Receiver on your client host, and see how good the message flow is.

The source code of all the test components can be found in the ExampleProjects folder for
reference.

For testing purposes there is a communicator running on the Linode machine with IP address
"139.162.234.7". You can try to configure your test components to communicate via this remote
communicator. The communication settings should be like these:

section DCN

{
item "AvailableHosts", "localhost,139.162.234.7";
item "ForcelInitialized", "false";
item "HostsAliases", "ubuntu:139.162.234.7";
item "IsBroadcastAvailable", "false";
item "PortsForComponents", "1051-1150";
item "PortsForNodes", "1024-1030";
item "ScanNetHostsTimerMin", "60";
item "ScanPortsRate", "15";
} // DCN

There is "localhost" in "AvailableHosts" too just to make the component to connect local host first,
and if not found — go to the linode host.

Do not use the test host for your games — it's available not on permanent basis, and only as an
example! This address may change.

BTW, Linode may be a good choice to host your game server remotely (see
https://www.linode.com/pricing/). 1 am fine with $10 a month option to host a linux (ubuntu)
machine. Initially, I hosted my game on my home computer, but found not good running it in 24/7
mode...

66

Configuration

Any MATRIX component has a configuration file located in the same folder where the executable
is. The file has a name in following format "<ComponentName>.zxs", where "<ComponentName>"
is based on the name of the component given by "zx.matrix.CMatrixSubsystem.Start" call. For
example "zx.matrix.CMatrixSubsystem.Start("My Component")" will generate
"My_Component.zxs" configuration file.

If doesn't exist, the configuration file is created automatically with default settings when the
application starts.

:\Temp\DCNTest>dir
Volume in drive C is 0S
Volume Serial Number is SASD-7A99

Directory of C:\Temp\DCNTest

17:
17:
15:
15:
15:
15:
15:
14:
17:
14:
17:
14:

39
39
21
21
28
21
28
43
39
43
39
43

<DIR>
<DIR> .
11,754,496 CSMatrix.dll
11,155,456 dcnNode.exe

957cemode 75>
11,506,176 dcnTestComponent.exe
7,168 TestClient.exe
21 K [ETECTTent 225>
6,144 TestServer.exe

21 estServer.zxs
69,632 zStdCSLib.d1ll

36/06/2021
30/06/2021
36/06/2021
1e/87/2021
30/06/2021

After creation the configuration file may have the following content, for example:

//### AUTO GENERATED CONFIGURATION SECTION START >>>
// Ver. *** 1.0.2.4 27.03.2008 ***
// Generation Time: 30.06.2021 15:28:53
section Root
{
// DCN Connection settings
section DCN

{
item "AvailableHosts", "localhost";
item "ForcelInitialized", "false";
item "HostsAliases", s
item "PortsForComponents", "1051-1150";
item "PortsForNodes", "1024-1030";
item "ScanNetHostsTimerMin", "60";
item "ScanPortsRate", "15";

} // DCN

// Trace output settings
section Trace

{
item "LogLockIDs", .
item "TraceFileLinesLimit", "2147483647";
item "TraceFileTimeLimit", "60";
item "TraceInColour", "false";
item "TraceLevel", ",
item "TraceLock", "true";
item "TraceLockCat", s
item "TracePath", "c:/Temp/DCNTest/DCN Test";
item "TracePeriod", "24";
item "TraceStructured", "false";
item "TraceTimeFormat", "hh:mi:ss.TTT";
} // Trace
} // Root

//### AUTO GENERATED CONFIGURATION SECTION END <<<

It consists of "Sections" and "Items". The sections can be treated as "folders" and items as "values".

67

There main section is always "Root". Any section can contain any number of sub-sections and
items.

Using MATRIX methods "zx.matrix.CMatrixSubsystem.GetCfgltem/SetCfgltem" one can

read/write specific configuration items using a "path" programmatically, like:
zx.matrix.CMatrixSubsystem.SetCfgItem("DCN.AvailableHosts", "139.162.44.34,1localhost");
var tracePath = zx.matrix.CMatrixSubsystem.GetCfgItem("Trace.TracePath");

A "path" is constructed using a "dot-notation": "<section>.<subsection>.<item name>". Section

"Root" is not mentioned in the path because everything is considered to be inside the Root.

Configuration items can belong directly to the Root. In this case they are addressed without any

"sections" like:

var cfgTitem = zx.matrix.CMatrixSubsystem.GetCfgItem("Item1");

The configuration files are "live", i.e. you can change the data while the component is running. The
component will catch up with the changes automatically. Be careful when changing the
configuration files manually — don't break the syntax! If you do, the component will fail to load the
updated file and re-generate a new one with default settings! Also, the components may update the
files themselves when they quit — this will overwrite your unsaved changes.

68

Setting up Communication

MATRIX Component Settings

The communication between the MATRIX components and the Communicator is set in "DCN"
section:

// DCN Connection settings
section DCN

{
item "AvailableHosts", "localhost";
item "ForcelInitialized", "false";
item "HostsAliases", s
item "PortsForComponents", "1051-1150";
item "PortsForNodes", "1024-1030";
item "ScanNetHostsTimerMin", "60";
item "ScanPortsRate", "15";

} // DCN

* AvailableHosts — a list of hosts separated by comma where the MATRIX component will
search the Communicator. By default — it is "localhost". Also, only connections coming from
the hosts listed here will be accepted. It's possible to use "*" as a wildcard. For example
"MyHost*" - all hosts started from "MyHost" will be used. Or "*" - all hosts hosts will be
used. But be extremely careful with the "*"! Using wildcards for the MATRIX component
may involve too many hosts (actually all hosts found by scanning the network) or no hosts at
all! The wildcard is the best suitable for the communicator, because it doesn't know where
incoming connections may come from, but, normally, the client applications (like MATRIX
components) know where the communicator is. Therefore, be specific — just point a host
where the communicator is to avoid long connection delays.

* Forcelnitialized — if set to "true", the component considers itself as "Initialized" and doesn't
try to connect to communicator. By default it's "false", i.e. the component will try to connect
to the communicator until the connection is established. Setting "Forcelnitialized" in "true"
makes sense only if the component is supposed to work "offline" and shouldn't waste efforts
to find the communicator in the network.

* HostsAliases — a list of host aliases, separated by comma. This field is used to resolve the
address in the response on connection request coming from the communicator. Example:

section DCN

{

item "AvailableHosts", "139.162.234.7";

item "ForcelInitialized", "false";

item "HostsAliases", "ubuntu:139.162.234.7";
} // DCN

The problem is, when a communicator host is specified using an IP address like above, the
connection response message will contain a host name, not an IP address. In this particular case, the
communicator returns its host name as "ubuntu". "HostAliases" help the framework to resolve host
"ubuntu" as "139.162.234.7". This problem arises only when trying to connect the communicator
using IP addresses — what is the most common case when the communicator is located somewhere
in the WEB. For local networks you can use host names directly and avoid bothering with host
aliases.

* PortsForComponents — a range of ports allocated for the MATRIX components on your
machine. The MATRIX framework doesn't use a single port to specify a connection point, it
uses ranges instead. It's more convenient and flexible (a specific port may be busy, in this

69

case your component will select a free one from the range). Default value is "1051-1150",
giving you 100 ports. Unless you have a strong wish to change the port range, just leave it as
it is. If you want to use just one port — specify it like "1051". Examples of port ranges:
"1051" - just a single port; "1051,1052" - just two ports; "1002-1010,1100-1200, 3455":
ports from 1002 to 1010 and from 1100 to 1200 and port 3455.

PortsForNodes — a range of ports used by the Communicator. Your MATRIX component
will look for the communicator on the hosts specified by "AvailableHosts" and only on
ports, specified by "PortsForNodes". Keep "PortsForNodes" range in synch with the
communicator setting "PortsForNodes" (the same name) - see below.

ScanNetHostsTimerMin — specifies a time in minutes to scan all available hosts in the
network. It's an expensive and long operation. Default value is "60" what makes one hour.
Don't touch this item unless you know what you are doing.

ScanPortsRate — specifies a time in seconds to scan the ports on the available hosts to look
for the communicator. Default value is "15"

Communicator Settings

The communicator settings are located in the dcnNode.zxs configuration file directly in the "Root":

section Root

{,
item
item
item
item
item

"AvailableHosts", "localhost";
"HostsAliases", s
"NodeHosts", n
"PortsForNodes", "1024-1030";
"ScanNetHostsTimerMin", "60";

// Trace output settings

AvadilableHosts — a list of hosts separated by comma the communicator accepts the
connections from. The syntax is the same as for the MATRIX components. But, for the
communicator it makes sense to use just a wildcard "*" to accept connections from any host
(unless you know exactly which hosts are used by your players).

HostsAliases — a list of host aliases, separated by comma. This field doesn't make sense for
the communicator, leave it blank

PortsForNodes — a range of ports used by the Communicator. The communicator will use
the first free port of the range for its connection point. Your MATRIX components should
use the same range of ports in their "PortsForNodes" setting.

ScanNetHosts TimerMin — specifies a time in minutes to scan all available hosts in the
network. It's an expensive and long operation. Default value is "60" what makes one hour.
Don't touch this item unless you know what you are doing.

70

Example of the communication settings

Normally, your game server will run on the remote internet host. It will be connected by multiple
clients from anywhere in the WEB. It makes sense to run the communicator (dcnNode.exe) as a
Service on the same machine as the game server.

Let's assume that we use standard port range set by default. In this case the following settings will
fork for you:

Communicator:

Game Server:

Client application:

If by some reason you find convenient to place the Game Server on a separate host, it's
configuration will be exactly the same as for "Client Application", because from the communicator
"perspective" - the game server is another "component".

71

Setting up Trace

All the MATRIX components and the communicator may write diagnostic information into the
trace files. The trace settings are located in the section "Trace" in the configuration file (they are the
same for the components and communicator):

// Trace output settings
section Trace

{

item "LogLockIDs", e
item "TraceFilelLinesLimit", "2147483647";
item "TraceFileTimeLimit", "60";

item "TraceInColour", "false";
item "TraceLevel", "1,
item "TraceLock", "true";
item "TraceLockCat", s
item "TracePath", "c:/Temp/DCNTest/DCN Test";
item "TracePeriod", "24";
item "TraceStructured", "false";
item "TraceTimeFormat", "hh:mi:ss.TTT";
} // Trace

LogLockIDs — a list trace IDs to be excluded from trace. Leave it empty

TraceFileLinesLimit — maximum number of lines in the trace file. Default value
"2147483647" literally means "unlimited"

TraceFileTimeLimit — maximum time of tracing in one file in minutes before the roll. "60"
(one hour) is a default value.

TraceInColour — this parameter works only for console output: if "true", the console trace is
done in colour.

TraceLevel — traces the messages up to specified trace level: 0 — no trace, 1 — normal, 2 —
detailed, 3 — debug, 4 — detailed debug. Specifying the level larger than 2 may cause too
noise trace and affect the performance.

TraceLock — if "true", the file trace is locked (no file trace).
TraceLockCat — locks specified trace categories (leave it untouched)
TracePath — specifies a path where the trace files are created

TracePeriod — specifies a live time of the trace files in hours. Default is "24" (hours). The
trace files which are older than "TracePeriod" hours from now are removed automatically.

TraceStructured — changes a view of trace lines if "true" to look a "structured" way.

TraceTimeFormat — specifies a time output for each trace line. Default value is
"hh:mi:ss. TTT" (hh — hours, mi — minutes, ss — seconds, TTT — milliseconds). In this format
the time stamp looks so "19:12:23.311"

By default the MATRIX component produce no file trace (because parameter "TraceLock" is
"true"). Set it to "false" and set "TraceLevel" to "1" or bigger if you'd like to see some trace. You
may want to do it if you have connectivity problems and would like to know what's going on.

The trace system creates rolling trace files in the specified directory (parameter "TracePath"). The
individual trace file name is constructed from component name, time of creation and process id:

<ComponentName>_<Creation DateTime in format YYYYMMDD_hhmiss>_<ProcessId>.log

72

0S(C) » Temp » Log » DCN Test

~ ~
Name

= cnlestComponent . = 2

| denTestC 20210616_161218_13528
= cnlestComponent . = .

| denTestC 20210616_161218_24788
= cnlestComponent . = .

=| denTestC 20210616_161218_27136
D denTestComponent_20210616_161218_29532
D dcnTestComponent_20210616_161218_34668
D denTestComponent_20210616_161218_53708
D denTestComponent_20210616_161218_57988
D denTestComponent_20210616_161219_25404
D denTestComponent_20210616_161219_40876

v

[$]

Date modified

16/06/2021
16/06/2021
16/06/2021
16/06/2021
16/06/2021
16/06/2021
16/06/2021
16/06/2021
16/06/2021

16:13
16:13
16:13
16:13
16:13
16:13
16:13
16:13
16:13

0

Search DCN Test

Type

Text Document
Text Document
Text Document
Text Document
Text Document
Text Document
Text Document
Text Document

Text Document

The individual files live time is specified by parameter "TracePeriod".

	Introduction
	The Package
	Quick Programming Guide
	MATRIX API
	API Methods
	ForceSaveConfig
	GetConfigItem
	GetMasterAddress
	GetSystemInfo
	RegisterMethod
	Send
	SendToMe
	SetAvailableHosts
	SetHostAliases
	SetComponentState
	SetConfigItem
	Start
	Stop
	Subscribe
	SynchRequest
	Trace
	Unsubscribe
	WaitForComponent
	WaitForComponentInit

	Property List
	Data Types
	CPropertyList Methods
	CPropertyList (constructor)
	AddProperty
	AddPropertyValue
	AddBranch
	FindProperty
	FindPropertyV
	GetProperty
	DeleteProperty
	GetEnum
	Count

	Constructing, sending and receiving Messages
	Using MATRIX in Unity
	Setting up the Environment
	Initializing the MATRIX in your game
	Using SynchRequest
	Message subscriptions

	Using MATRIX in Visual Studio
	Communicator
	It’s waiting for incoming connections and periodically checking other communicators running on the same host. Press ‘q’ to stop the console run gracefully.
	Your Fire Wall may complain this way:
	Just allow access and carry on.
	On the real environment it makes sense to install the communicator as a Windows Service to make it start automatically along with the host. To display command line options run “dcnNode -h”:
	To install a windows service simply type in command prompt “dcnNode -i” (make sure you are running the command prompt as Administrator):
	In the Services you’ll see:
	Now, you can start/stop the communicator using this terrible app. Because it is set “Automatic” the service will start every time you reboot the host.
	To uninstall the communicator service do the following:
	Test Components
	Configuration
	Any MATRIX component has a configuration file located in the same folder where the executable is. The file has a name in following format "<ComponentName>.zxs", where "<ComponentName>" is based on the name of the component given by "zx.matrix.CMatrixSubsystem.Start" call. For example "zx.matrix.CMatrixSubsystem.Start("My Component")" will generate "My_Component.zxs" configuration file.
	If doesn't exist, the configuration file is created automatically with default settings when the application starts.
	After creation the configuration file may have the following content, for example:
	It consists of "Sections" and "Items". The sections can be treated as "folders" and items as "values". There main section is always "Root". Any section can contain any number of sub-sections and items.
	Using MATRIX methods "zx.matrix.CMatrixSubsystem.GetCfgItem/SetCfgItem" one can read/write specific configuration items using a "path" programmatically, like:
	...
	...
	A "path" is constructed using a "dot-notation": "<section>.<subsection>.<item name>". Section "Root" is not mentioned in the path because everything is considered to be inside the Root.
	Configuration items can belong directly to the Root. In this case they are addressed without any "sections" like:
	...
	Setting up Communication
	MATRIX Component Settings
	Communicator Settings
	Example of the communication settings

	Setting up Trace

